Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Nature ; 617(7962): 764-768, 2023 May.
Article in English | MEDLINE | ID: covidwho-2325395

ABSTRACT

Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte-macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).


Subject(s)
COVID-19 , Critical Illness , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , Humans , COVID-19/genetics , Genetic Predisposition to Disease/genetics , Genotype , Phenotype , Genetic Variation/genetics , Whole Genome Sequencing , Transcriptome , Monocytes/metabolism , rab GTP-Binding Proteins/genetics , Genotyping Techniques
2.
Mol Psychiatry ; 2023 Apr 26.
Article in English | MEDLINE | ID: covidwho-2302288

ABSTRACT

Intensive care unit (ICU) staff continue to face recurrent work-related traumatic events throughout the COVID-19 pandemic. Intrusive memories (IMs) of such traumatic events comprise sensory image-based memories. Harnessing research on preventing IMs with a novel behavioural intervention on the day of trauma, here we take critical next steps in developing this approach as a treatment for ICU staff who are already experiencing IMs days, weeks, or months post-trauma. To address the urgent need to develop novel mental health interventions, we used Bayesian statistical approaches to optimise a brief imagery-competing task intervention to reduce the number of IMs. We evaluated a digitised version of the intervention for remote, scalable delivery. We conducted a two-arm, parallel-group, randomised, adaptive Bayesian optimisation trial. Eligible participants worked clinically in a UK NHS ICU during the pandemic, experienced at least one work-related traumatic event, and at least three IMs in the week prior to recruitment. Participants were randomised to receive immediate or delayed (after 4 weeks) access to the intervention. Primary outcome was the number of IMs of trauma during week 4, controlling for baseline week. Analyses were conducted on an intention-to-treat basis as a between-group comparison. Prior to final analysis, sequential Bayesian analyses were conducted (n = 20, 23, 29, 37, 41, 45) to inform early stopping of the trial prior to the planned maximum recruitment (n = 150). Final analysis (n = 75) showed strong evidence for a positive treatment effect (Bayes factor, BF = 1.25 × 106): the immediate arm reported fewer IMs (median = 1, IQR = 0-3) than the delayed arm (median = 10, IQR = 6-16.5). With further digital enhancements, the intervention (n = 28) also showed a positive treatment effect (BF = 7.31). Sequential Bayesian analyses provided evidence for reducing IMs of work-related trauma for healthcare workers. This methodology also allowed us to rule out negative effects early, reduced the planned maximum sample size, and allowed evaluation of enhancements. Trial Registration NCT04992390 ( www.clinicaltrials.gov ).

3.
PLoS Med ; 20(1): e1004174, 2023 01.
Article in English | MEDLINE | ID: covidwho-2261992

ABSTRACT

BACKGROUND: Sepsis is characterised by dysregulated, life-threatening immune responses, which are thought to be driven by cytokines such as interleukin 6 (IL-6). Genetic variants in IL6R known to down-regulate IL-6 signalling are associated with improved Coronavirus Disease 2019 (COVID-19) outcomes, a finding later confirmed in randomised trials of IL-6 receptor antagonists (IL6RAs). We hypothesised that blockade of IL6R could also improve outcomes in sepsis. METHODS AND FINDINGS: We performed a Mendelian randomisation (MR) analysis using single nucleotide polymorphisms (SNPs) in and near IL6R to evaluate the likely causal effects of IL6R blockade on sepsis (primary outcome), sepsis severity, other infections, and COVID-19 (secondary outcomes). We weighted SNPs by their effect on CRP and combined results across them in inverse variance weighted meta-analysis, proxying the effect of IL6RA. Our outcomes were measured in UK Biobank, FinnGen, the COVID-19 Host Genetics Initiative (HGI), and the GenOSept and GainS consortium. We performed several sensitivity analyses to test assumptions of our methods, including utilising variants around CRP and gp130 in a similar analysis. In the UK Biobank cohort (N = 486,484, including 11,643 with sepsis), IL6R blockade was associated with a decreased risk of our primary outcome, sepsis (odds ratio (OR) = 0.80; 95% confidence interval (CI) 0.66 to 0.96, per unit of natural log-transformed CRP decrease). The size of this effect increased with severity, with larger effects on 28-day sepsis mortality (OR = 0.74; 95% CI 0.47 to 1.15); critical care admission with sepsis (OR = 0.48, 95% CI 0.30 to 0.78) and critical care death with sepsis (OR = 0.37, 95% CI 0.14 to 0.98). Similar associations were seen with severe respiratory infection: OR for pneumonia in critical care 0.69 (95% CI 0.49 to 0.97) and for sepsis survival in critical care (OR = 0.22; 95% CI 0.04 to 1.31) in the GainS and GenOSept consortium, although this result had a large degree of imprecision. We also confirm the previously reported protective effect of IL6R blockade on severe COVID-19 (OR = 0.69, 95% CI 0.57 to 0.84) in the COVID-19 HGI, which was of similar magnitude to that seen in sepsis. Sensitivity analyses did not alter our primary results. These results are subject to the limitations and assumptions of MR, which in this case reflects interpretation of these SNP effects as causally acting through blockade of IL6R, and reflect lifetime exposure to IL6R blockade, rather than the effect of therapeutic IL6R blockade. CONCLUSIONS: IL6R blockade is causally associated with reduced incidence of sepsis. Similar but imprecisely estimated results supported a causal effect also on sepsis related mortality and critical care admission with sepsis. These effects are comparable in size to the effect seen in severe COVID-19, where IL-6 receptor antagonists were shown to improve survival. These data suggest that a randomised trial of IL-6 receptor antagonists in sepsis should be considered.


Subject(s)
COVID-19 , Sepsis , Humans , Interleukin-6/genetics , Hospitalization , Receptors, Interleukin-6/genetics , Sepsis/drug therapy , Sepsis/genetics , Mendelian Randomization Analysis
4.
Lancet Respir Med ; 2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2245515
5.
Chest ; 2023 Feb 10.
Article in English | MEDLINE | ID: covidwho-2232204

ABSTRACT

BACKGROUND: Few data from low-income countries report on respiratory support techniques in COVID-19-associated ARDS. RESEARCH QUESTION: Which respiratory support techniques are used in patients with COVID-19-associated ARDS in Uganda? STUDY DESIGN AND METHODS: A multicenter, prospective, observational study was conducted at 13 Ugandan hospitals during the pandemic and included adults with COVID-19-associated ARDS. Patient characteristics, clinical and laboratory data, initial and most advanced respiratory support techniques, and 28-day mortality were recorded. Standard tests, log-rank tests, and logistic regression analyses were used for statistical analyses. RESULTS: Four hundred ninety-nine patients with COVID-19-associated ARDS (mild, n = 137; moderate, n = 247; and severe, n = 115) were included (ICU admission, 38.9%). Standard oxygen therapy (SOX), high-flow nasal oxygen (HFNO), CPAP, noninvasive ventilation (NIV), and invasive mechanical ventilation (IMV) was used as the first-line (most advanced) respiratory support technique in 37.3% (35.3%), 10% (9.4%), 11.6% (4.8%), 23.4% (14.4%), and 17.6% (36.6%) of patients, respectively. The first-line respiratory support technique was escalated in 19.8% of patients. Twenty-eight-day mortality was 51.9% (mild ARDS, 13.1%; moderate ARDS, 62.3%; severe ARDS, 75.7%; P < .001) and was associated with respiratory support techniques as follows: SOX, 19.9%; HFNO, 31.9%; CPAP, 58.3%; NIV 61.1%; and IMV, 83.9% (P < .001). Proning was used in 79 patients (15.8%; 59/79 awake) and was associated with lower mortality (40.5% vs 54%; P = .03). The oxygen saturation to Fio2 ratio (OR, 0.99; 95% CI, 0.98-0.99; P < .001) and respiratory rate (OR, 1.07; 95% CI, 1.03-1.12; P = .002) at admission and NIV (OR, 6.31; 95% CI, 2.29-17.37; P < .001) or IMV (OR, 8.08; 95% CI, 3.52-18.57; P < .001) use were independent risk factors for death. INTERPRETATION: SOX, HFNO, CPAP, NIV, and IMV were used as respiratory support techniques in patients with COVID-19-associated ARDS in Uganda. Although these data are observational, they suggest that the use of SOX and HFNO therapy as well as awake proning are associated with a lower mortality resulting from COVID-19-associated ARDS in a resource-limited setting.

6.
Eur Respir J ; 2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2234221

ABSTRACT

Abstract BACKGROUND: Granulocyte-macrophage colony-stimulating factor (GM-CSF) and dysregulated myeloid cell responses are implicated in the pathophysiology and severity of coronavirus disease 2019 (COVID-19). METHODS: In this randomised, sequential, multicentre, placebo-controlled, double-blind study, adults aged 18-79 years (Part 1) or ≥70 years (Part 2) with severe COVID-19, respiratory failure, and systemic inflammation (elevated C-reactive protein/ferritin) received a single intravenous infusion of otilimab 90 mg (human anti-GM-CSF monoclonal antibody) plus standard care (NCT04376684). The primary outcome was the proportion of patients alive and free of respiratory failure at Day 28. RESULTS: In Part 1 (N=806 randomised 1:1 otilimab:placebo), 71% of otilimab-treated patients were alive and free of respiratory failure at Day 28 versus 67% who received placebo; the model-adjusted difference of 5.3% was not statistically significant (95% CI -0.8, 11.4; p=0.09). A nominally significant model-adjusted difference of 19.1% (95% CI 5.2, 33.1; p=0.009) was observed in the predefined 70-79 years subgroup, but this was not confirmed in Part 2 (N=350 randomised) where the model-adjusted difference was 0.9% (95% CI -9.3, 11.2; p=0.86). Compared with placebo, otilimab resulted in lower serum concentrations of key inflammatory markers, including the putative pharmacodynamic biomarker CCL17, indicative of GM-CSF pathway blockade. Adverse events were comparable between groups and consistent with severe COVID-19. CONCLUSIONS: There was no significant difference in the proportion of patients alive and free of respiratory failure at Day 28. However, despite the lack of clinical benefit, a reduction in inflammatory markers was observed with otilimab, in addition to an acceptable safety profile.

7.
Pulm Circ ; 13(1): e12192, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2219862

ABSTRACT

Similar to other causes of acute respiratory distress syndrome, coronavirus disease 2019 (COVID-19) is characterized by the aberrant expression of vascular injury biomarkers. We present the first report that circulating plasma bone morphogenetic proteins (BMPs), BMP9 and pBMP10, involved in vascular protection, are reduced in hospitalized patients with COVID-19.

8.
Brain ; 145(11): 4097-4107, 2022 11 21.
Article in English | MEDLINE | ID: covidwho-2017743

ABSTRACT

COVID-19 is associated with neurological complications including stroke, delirium and encephalitis. Furthermore, a post-viral syndrome dominated by neuropsychiatric symptoms is common, and is seemingly unrelated to COVID-19 severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host inflammatory responses appear to be a key driver of COVID-19 severity. We investigated the dynamics of, and relationship between, serum markers of brain injury [neurofilament light (NfL), glial fibrillary acidic protein (GFAP) and total tau] and markers of dysregulated host response (autoantibody production and cytokine profiles) in 175 patients admitted with COVID-19 and 45 patients with influenza. During hospitalization, sera from patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity-dependent manner, with evidence of ongoing active brain injury at follow-up 4 months later. These biomarkers were associated with elevations of pro-inflammatory cytokines and the presence of autoantibodies to a large number of different antigens. Autoantibodies were commonly seen against lung surfactant proteins but also brain proteins such as myelin associated glycoprotein. Commensurate findings were seen in the influenza cohort. A distinct process characterized by elevation of serum total tau was seen in patients at follow-up, which appeared to be independent of initial disease severity and was not associated with dysregulated immune responses unlike NfL and GFAP. These results demonstrate that brain injury is a common consequence of both COVID-19 and influenza, and is therefore likely to be a feature of severe viral infection more broadly. The brain injury occurs in the context of dysregulation of both innate and adaptive immune responses, with no single pathogenic mechanism clearly responsible.


Subject(s)
Brain Injuries , COVID-19 , Influenza, Human , Humans , Neurofilament Proteins , COVID-19/complications , Biomarkers , Autoantibodies , Immunity
9.
BMJ Nutr Prev Health ; 5(2): 137-144, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1950125

ABSTRACT

Background: The COVID-19 pandemic may have contributed to poorer self-management (ie, diet, physical activity and sleep) of diabetes mellitus (DM), which might predispose individuals to more severe COVID-19 outcomes. Objective: The first objective was to capture perceived changes in diet, physical activity and sleeping during the COVID-19 pandemic in adults with type 1 (T1DM) and type 2 diabetes mellitus (T2DM) in the UK. A second objective was to explore differences between individuals with DM compared with 'no' or 'other' health conditions. Methods: Participants aged >18 years were selected by convenience. Individuals subscribed to the Diabetes.co.uk community were sent a web-based survey including questions about demographics and health, followed by 5-point Likert-type scale questions relating to lifestyle-related behaviours during the COVID-19 pandemic. Individuals were grouped by diagnosis of DM, 'other' or 'no' health condition and responses were compared. Results: 4764 individuals responded, with 2434 (51.3%) being female and 1550 (32.6%) aged 55-64 years. T2DM (2974; 62.7%), hypertension (2147; 45.2%) and T1DM (1299; 27.4%) were most frequently reported. Compared with T1DM, 'no' or 'other' health conditions, respondents with T2DM reported making a less conscious effort to get outside and exercise daily (p<0.001) and spending no time outdoors (p=0.001). Weight loss was more frequently reported in respondents with T2DM (p=0.005). More individuals with T2DM reported consuming convenience foods (p=0.012) and sugary foods (p=0.021), yet eating more fresh foods (p=0.001) and drinking less alcohol than normal (p<0.001). More individuals with T1DM and T2DM reported worse sleep quality (p=0.004). Conclusions: Our study highlighted important differences in lifestyle by individuals with T1DM, T2DM, other and no health conditions in relation to the COVID-19 pandemic. Establishing surveillance systems and conducting repeated assessments are required to analyse how the situation shifted over time and whether adverse collateral effects of the pandemic were sustained in those with chronic health conditions.

10.
Nat Med ; 28(6): 1141-1148, 2022 06.
Article in English | MEDLINE | ID: covidwho-1900513

ABSTRACT

Research and practice in critical care medicine have long been defined by syndromes, which, despite being clinically recognizable entities, are, in fact, loose amalgams of heterogeneous states that may respond differently to therapy. Mounting translational evidence-supported by research on respiratory failure due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-suggests that the current syndrome-based framework of critical illness should be reconsidered. Here we discuss recent findings from basic science and clinical research in critical care and explore how these might inform a new conceptual model of critical illness. De-emphasizing syndromes, we focus on the underlying biological changes that underpin critical illness states and that may be amenable to treatment. We hypothesize that such an approach will accelerate critical care research, leading to a richer understanding of the pathobiology of critical illness and of the key determinants of patient outcomes. This, in turn, will support the design of more effective clinical trials and inform a more precise and more effective practice at the bedside.


Subject(s)
COVID-19 , SARS-CoV-2 , Critical Care , Critical Illness , Humans , Syndrome
11.
BMJ Open ; 11(10): e055435, 2021 10 22.
Article in English | MEDLINE | ID: covidwho-1480255

ABSTRACT

OBJECTIVES: The steroid hormone vitamin D has roles in immunomodulation and bone health. Insufficiency is associated with susceptibility to respiratory infections. We report 25-hydroxy vitamin D (25(OH)D) measurements in hospitalised people with COVID-19 and influenza A and in survivors of critical illness to test the hypotheses that vitamin D insufficiency scales with illness severity and persists in survivors. DESIGN: Cross-sectional study. SETTING AND PARTICIPANTS: Plasma was obtained from 295 hospitalised people with COVID-19 (International Severe Acute Respiratory and emerging Infections Consortium (ISARIC)/WHO Clinical Characterization Protocol for Severe Emerging Infections UK study), 93 with influenza A (Mechanisms of Severe Acute Influenza Consortium (MOSAIC) study, during the 2009-2010 H1N1 pandemic) and 139 survivors of non-selected critical illness (prior to the COVID-19 pandemic). Total 25(OH)D was measured by liquid chromatography-tandem mass spectrometry. Free 25(OH)D was measured by ELISA in COVID-19 samples. OUTCOME MEASURES: Receipt of invasive mechanical ventilation (IMV) and in-hospital mortality. RESULTS: Vitamin D insufficiency (total 25(OH)D 25-50 nmol/L) and deficiency (<25 nmol/L) were prevalent in COVID-19 (29.3% and 44.4%, respectively), influenza A (47.3% and 37.6%) and critical illness survivors (30.2% and 56.8%). In COVID-19 and influenza A, total 25(OH)D measured early in illness was lower in patients who received IMV (19.6 vs 31.9 nmol/L (p<0.0001) and 22.9 vs 31.1 nmol/L (p=0.0009), respectively). In COVID-19, biologically active free 25(OH)D correlated with total 25(OH)D and was lower in patients who received IMV, but was not associated with selected circulating inflammatory mediators. CONCLUSIONS: Vitamin D deficiency/insufficiency was present in majority of hospitalised patients with COVID-19 or influenza A and correlated with severity and persisted in critical illness survivors at concentrations expected to disrupt bone metabolism. These findings support early supplementation trials to determine if insufficiency is causal in progression to severe disease, and investigation of longer-term bone health outcomes.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Vitamin D Deficiency , Critical Illness , Cross-Sectional Studies , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , Pandemics , SARS-CoV-2 , Survivors , Vitamin D , Vitamin D Deficiency/complications , Vitamin D Deficiency/epidemiology
12.
JMIR Form Res ; 5(10): e31273, 2021 Oct 06.
Article in English | MEDLINE | ID: covidwho-1456217

ABSTRACT

BACKGROUND: The COVID-19 pandemic is taking a toll on people's mental health, particularly as people are advised to adhere to social distancing, self-isolation measures, and government-imposed national lockdowns. Digital health technologies have an important role to play in keeping people connected and in supporting their mental health and well-being. Even before the COVID-19 pandemic, mental health and social services were already strained. OBJECTIVE: Our objective was to evaluate the 12-week outcomes of the digitally delivered Gro Health intervention, a holistic digital behavior change app designed for self-management of mental well-being, sleep, activity, and nutrition. METHODS: The study used a quasi-experimental research design consisting of an open-label, single-arm, pre-post intervention engagement using a convenience sample. Adults who had joined the Gro Health app (intervention) and had a complete baseline dataset (ie, 7-item Generalized Anxiety Disorder scale, Perceived Stress Scale, and 9-item Patient Health Questionnaire) were followed up at 12 weeks (n=273), including 33 (12.1%) app users who reported a positive COVID-19 diagnosis during the study period. User engagement with the Gro Health platform was tracked by measuring total minutes of app engagement. Paired t tests were used to compare pre-post intervention scores. Linear regression analysis was performed to assess the relationship between minutes of active engagement with the Gro Health app and changes in scores across the different mental health measures. RESULTS: Of the 347 study participants, 273 (78.67%) completed both the baseline and follow-up surveys. Changes in scores for anxiety, perceived stress, and depression were predicted by app engagement, with the strongest effect observed for changes in perceived stress score (F1,271=251.397; R2=0.479; P<.001). CONCLUSIONS: A digital behavior change platform that provides remote mental well-being support can be effective in managing depression, anxiety, and perceived stress during times of crisis such as the current COVID-19 pandemic. The outcomes of this study may also support the implementation of remote digital health apps supporting behavior change and providing support for low levels of mental health within the community.

13.
JMIR Form Res ; 5(9): e29110, 2021 Sep 23.
Article in English | MEDLINE | ID: covidwho-1443967

ABSTRACT

BACKGROUND: Obesity underlies much chronic disease. Digitalization of obesity management provides an opportunity to innovate our traditional model of health care delivery within this setting, and to transform its scalability potentially to the population level. OBJECTIVE: The objective was to assess the feasibility and effectiveness of the Low Carb Program app for weight loss, applied within our hospital-based (tier 3) obesity service. Due to the disrupting effects of the COVID-19 pandemic on our obesity service, we compared the clinical outcomes from the Low Carb Program app applied in the context of remote patient appointments over the telephone with the prepandemic traditional standard of care. METHODS: We invited patients who attended our hospital-based obesity service to engage with the Low Carb Program smartphone app. We combined this approach with remote delivery (over the telephone) of obesity management from medical and psychology members of our obesity team during the COVID-19 pandemic. Outcome variables included changes in body weight and changes in HbA1c as a marker of glycemic control. We compared data from the Low Carb Program group with a retrospective control group (n=126) that had received traditional face-to-face obesity management from our team without concomitant use of the Low Carb Program app in the pre-COVID-19 era. T test comparisons were employed, with P<.05 considered significant. RESULTS: The mean weight of participants (n=105) was 130.2 kg, with 59% (n=62) females and a mean age of 48.8 years. Most participants (90/105, 86%) completed the Low Carb Program app registration process and engaged with the Low Carb Program app program; at follow-up, most participants (88/105, 84%) had actively engaged with the Low Carb Program app within the prior 30 days. The majority of participants (58/105, 55%) self-reported outcomes within the app. Mean duration of clinical follow-up for recruited participants who received the app was 7.4 months. Paired data were available for 48 participants for body weight and 41 participants for HbA1c. Paired sample t test analysis revealed a statistically significant mean loss of body weight of 2.7 kg (P=.001) and improvement in HbA1c of 3.3 mmol/mol (P=.01). The mean weight of control group patients (n=126) was 137.1 kg, with 74% (93/126) females and a mean age of 44.4 years. The mean follow-up for this group was 6 months. Data comparisons between the app user group and the pre-COVID-19 retrospective control group revealed equivalence for loss of body weight and change in HbA1c between the two groups. CONCLUSIONS: We provide evidence to support the feasibility of implementing the Low Carb Program app combined with remote management; this is the first proof of concept for digitalized management within a hospital-based (tier 3) obesity service. We demonstrate the potential clinical efficacy of the approach in terms of improvements in body weight and glycemic control.

14.
Clin Trials ; 18(5): 615-621, 2021 10.
Article in English | MEDLINE | ID: covidwho-1280563

ABSTRACT

The COVID-19 pandemic has resulted in unprecedented challenges for healthcare systems worldwide. It has also stimulated research in a wide range of areas including rapid diagnostics, novel therapeutics, use of technology to track patients and vaccine development. Here, we describe our experience of rapidly setting up and delivering a novel COVID-19 vaccine trial, using clinical and research staff and facilities in three National Health Service Trusts in Cambridgeshire, United Kingdom. We encountered and overcame a number of challenges including differences in organisational structures, research facilities available, staff experience and skills, information technology and communications infrastructure, and research training and assessment procedures. We overcame these by setting up a project team that included key members from all three organisations that met at least daily by teleconference. This group together worked to identify the best practices and procedures and to harmonise and cascade these to the wider trial team. This enabled us to set up the trial within 25 days and to recruit and vaccinate the participants within a further 23 days. The lessons learned from our experiences could be used to inform the conduct of clinical trials during a future infectious disease pandemic or public health emergency.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19 , Clinical Trials as Topic/standards , Pandemics , COVID-19/prevention & control , Clinical Trials as Topic/organization & administration , Humans , Pandemics/prevention & control , State Medicine , United Kingdom/epidemiology
15.
Thorax ; 77(2): 129-135, 2022 02.
Article in English | MEDLINE | ID: covidwho-1247403

ABSTRACT

BACKGROUND: COVID-19 has become the most common cause of acute respiratory distress syndrome (ARDS) worldwide. Features of the pathophysiology and clinical presentation partially distinguish it from 'classical' ARDS. A Research and Development (RAND) analysis gauged the opinion of an expert panel about the management of ARDS with and without COVID-19 as the precipitating cause, using recent UK guidelines as a template. METHODS: An 11-person panel comprising intensive care practitioners rated the appropriateness of ARDS management options at different times during hospital admission, in the presence or absence of, or varying severity of SARS-CoV-2 infection on a scale of 1-9 (where 1-3 is inappropriate, 4-6 is uncertain and 7-9 is appropriate). A summary of the anonymised results was discussed at an online meeting moderated by an expert in RAND methodology. The modified online survey comprising 76 questions, subdivided into investigations (16), non-invasive respiratory support (18), basic intensive care unit management of ARDS (20), management of refractory hypoxaemia (8), pharmacotherapy (7) and anticoagulation (7), was completed again. RESULTS: Disagreement between experts was significant only when addressing the appropriateness of diagnostic bronchoscopy in patients with confirmed or suspected COVID-19. Adherence to existing published guidelines for the management of ARDS for relevant evidence-based interventions was recommended. Responses of the experts to the final survey suggested that the supportive management of ARDS should be the same, regardless of a COVID-19 diagnosis. For patients with ARDS with COVID-19, the panel recommended routine treatment with corticosteroids and a lower threshold for full anticoagulation based on a high index of suspicion for venous thromboembolic disease. CONCLUSION: The expert panel found no reason to deviate from the evidence-based supportive strategies for managing ARDS outlined in recent guidelines.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19 Testing , Humans , Pandemics , Research , Respiration, Artificial , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , United Kingdom/epidemiology
16.
J Intensive Care Soc ; 23(3): 285-292, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1136203

ABSTRACT

Background: Whilst the management of Coronavirus disease-2019 (COVID-19) has evolved in response to the emerging data, treating such patients remains a challenge, and many treatments lack robust clinical evidence. We conducted a survey to evaluate Intensive Care Unit (ICU) management of COVID-19 patients with acute hypoxic respiratory failure and compared the results with data from a similar survey focusing on Acute Respiratory Distress Syndrome (ARDS) that was conducted in 2013. Methods: The questionnaire was refined from a previous survey of ARDS-related clinical practice using an online electronic survey engine (Survey Monkey®) and all UK intensivists were encouraged to participate. The survey was conducted between 16/05/2020 and 17/06/2020. Results: There were 137 responses from 89 UK centres. Non-invasive ventilation was commonly used in the form of CPAP. The primary ventilation strategy was the ARDSnet protocol, with 63% deviating from its PEEP recommendations. Similar to our previous ARDS survey, most allowed permissive targets for hypoxia (94%), hypercapnia (55%) and pH (94%). The routine use of antibiotics was common, and corticosteroids were frequently used, usually in the context of a clinical trial (45%). Late tracheostomy (>7 days) was preferred (92%). Routine follow-up was offered by 66% with few centres providing routine dedicated rehabilitation programmes following discharge. Compared to the ARDS survey, there is an increased use of neuromuscular agents, APRV ventilation and improved provision of rehabilitation services. Conclusions: Similar to our previous ARDS survey, this survey highlights variations in the management strategies used for patients with acute hypoxic respiratory failure due to COVID-19.

17.
Nature ; 591(7848): 92-98, 2021 03.
Article in English | MEDLINE | ID: covidwho-971937

ABSTRACT

Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice.


Subject(s)
COVID-19/genetics , COVID-19/physiopathology , Critical Illness , 2',5'-Oligoadenylate Synthetase/genetics , COVID-19/pathology , Chromosomes, Human, Pair 12/genetics , Chromosomes, Human, Pair 19/genetics , Chromosomes, Human, Pair 21/genetics , Critical Care , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Drug Repositioning , Female , Genome-Wide Association Study , Humans , Inflammation/genetics , Inflammation/pathology , Inflammation/physiopathology , Lung/pathology , Lung/physiopathology , Lung/virology , Male , Multigene Family/genetics , Receptor, Interferon alpha-beta/genetics , Receptors, CCR2/genetics , TYK2 Kinase/genetics , United Kingdom
18.
Intensive Care Med ; 46(12): 2157-2167, 2020 12.
Article in English | MEDLINE | ID: covidwho-911887

ABSTRACT

Care for patients with acute respiratory distress syndrome (ARDS) has changed considerably over the 50 years since its original description. Indeed, standards of care continue to evolve as does how this clinical entity is defined and how patients are grouped and treated in clinical practice. In this narrative review we discuss current standards - treatments that have a solid evidence base and are well established as targets for usual care - and also evolving standards - treatments that have promise and may become widely adopted in the future. We focus on three broad domains of ventilatory management, ventilation adjuncts, and pharmacotherapy. Current standards for ventilatory management include limitation of tidal volume and airway pressure and standard approaches to setting PEEP, while evolving standards might focus on limitation of driving pressure or mechanical power, individual titration of PEEP, and monitoring efforts during spontaneous breathing. Current standards in ventilation adjuncts include prone positioning in moderate-severe ARDS and veno-venous extracorporeal life support after prone positioning in patients with severe hypoxemia or who are difficult to ventilate. Pharmacotherapy current standards include corticosteroids for patients with ARDS due to COVID-19 and employing a conservative fluid strategy for patients not in shock; evolving standards may include steroids for ARDS not related to COVID-19, or specific biological agents being tested in appropriate sub-phenotypes of ARDS. While much progress has been made, certainly significant work remains to be done and we look forward to these future developments.


Subject(s)
Respiratory Distress Syndrome/therapy , Standard of Care/trends , COVID-19/complications , COVID-19/physiopathology , Fluid Therapy/methods , Fluid Therapy/trends , Humans , Prone Position/physiology , Respiratory Distress Syndrome/physiopathology
19.
Trials ; 21(1): 691, 2020 Jul 31.
Article in English | MEDLINE | ID: covidwho-699024

ABSTRACT

OBJECTIVES: Stage 1: To evaluate the safety and efficacy of candidate agents as add-on therapies to standard of care (SoC) in patients hospitalised with COVID-19 in a screening stage. Stage 2: To confirm the efficacy of candidate agents selected on the basis of evidence from Stage 1 in patients hospitalised with COVID-19 in an expansion stage. TRIAL DESIGN: ACCORD is a seamless, Phase 2, adaptive, randomised controlled platform study, designed to rapidly test candidate agents in the treatment of COVID-19. Designed as a master protocol with each candidate agent being included via its own sub-protocol, initially randomising equally between each candidate and a single contemporaneous SoC arm (which can adapt into 2:1). Candidate agents currently include bemcentinib, MEDI3506, acalabrutinib, zilucoplan and nebulised heparin. For each candidate a total of 60 patients will be recruited in Stage 1. If Stage 1 provides evidence of efficacy and acceptable safety the candidate will enter Stage 2 where a total of approximately 126 patients will be recruited into each study arm sub-protocol. Enrollees and outcomes will not be shared across the Stages; the endpoint, analysis and sample size for Stage 2 may be adjusted based on evidence from Stage 1. Additional arms may be added as new potential candidate agents are identified via candidate agent specific sub-protocols. PARTICIPANTS: The study will include hospitalised adult patients (≥18 years) with confirmed SARS-CoV-2 infection, the virus that causes COVID-19, that clinically meet Grades 3 (hospitalised - mild disease, no oxygen therapy), Grades 4 (hospitalised, oxygen by mask or nasal prongs) and 5 (hospitalised, non-invasive ventilation or high flow oxygen) of the WHO Working Group on the Clinical Characteristics of COVID-19 9-point category ordinal scale. Participants will be recruited from England, Northern Ireland, Wales and Scotland. INTERVENTION AND COMPARATOR: Comparator is current standard of care (SoC) for the treatment of COVID-19. Current candidate experimental arms include bemcentinib, MEDI3506, acalabrutinib, zilucoplan and nebulised heparin with others to be added over time. Bemcentinib could potentially reduce viral infection and blocks SARS-CoV-2 spike protein; MEDI3506 is a clinic-ready anti-IL-33 monoclonal antibody with the potential to treat respiratory failure caused by COVID; acalabrutinib is a BTK inhibitor which is anti-viral and anti-inflammatory; zilucoplan is a complement C5 inhibitor which may block the severe inflammatory response in COVID-19 and; nebulised heparin has been shown to bind with the spike protein. ACCORD is linked with the UK national COVID therapeutics task force to help prioritise candidate agents. MAIN OUTCOMES: Time to sustained clinical improvement of at least 2 points (from randomisation) on the WHO 9-point category ordinal scale, live discharge from the hospital, or considered fit for discharge (a score of 0, 1, or 2 on the ordinal scale), whichever comes first, by Day 29 (this will also define the "responder" for the response rate analyses). RANDOMISATION: An electronic randomization will be performed by Cenduit using Interactive Response Technology (IRT). Randomisation will be stratified by baseline severity grade. Randomisation will proceed with an equal allocation to each arm and a contemporaneous SoC arm (e.g. 1:1 if control and 1 experimental arm; 1:1:1 if two experimental candidate arms etc) but will be reviewed as the trial progresses and may be changed to 2:1 in favour of the candidate agents. BLINDING (MASKING): The trial is open label and no blinding is currently planned in the study. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): This will be in the order of 60 patients per candidate agent for Stage 1, and 126 patients for Stage 2. However, sample size re-estimation may be considered after Stage 1. It is estimated that up to 1800 patients will participate in the overall study. TRIAL STATUS: Master protocol version ACCORD-2-001 - Master Protocol (Amendment 1) 22nd April 2020, the trial has full regulatory approval and recruitment is ongoing in the bemcentinib (first patient recruited 6/5/2020), MEDI3506 (first patient recruited 19/5/2020), acalabrutinib (first patient recruited 20/5/2020) and zilucoplan (first patient recruited 19/5/2020) candidates (and SoC). The recruitment dates of each arm will vary between candidate agents as they are added or dropped from the trial, but will have recruited and reported within a year. TRIAL REGISTRATION: EudraCT 2020-001736-95 , registered 28th April 2020. FULL PROTOCOL: The full protocol (Master Protocol with each of the candidate sub-protocols) is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Randomized Controlled Trials as Topic , Antiviral Agents/adverse effects , Benzamides/therapeutic use , COVID-19 , Hospitalization , Humans , Pandemics , Pyrazines/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Standard of Care , COVID-19 Drug Treatment
20.
Lancet Respir Med ; 8(8): 822-830, 2020 08.
Article in English | MEDLINE | ID: covidwho-599200

ABSTRACT

The COVID-19 pandemic is a global public health crisis, with considerable mortality and morbidity exerting pressure on health-care resources, including critical care. An excessive host inflammatory response in a subgroup of patients with severe COVID-19 might contribute to the development of acute respiratory distress syndrome (ARDS) and multiorgan failure. Timely therapeutic intervention with immunomodulation in patients with hyperinflammation could prevent disease progression to ARDS and obviate the need for invasive ventilation. Granulocyte macrophage colony-stimulating factor (GM-CSF) is an immunoregulatory cytokine with a pivotal role in initiation and perpetuation of inflammatory diseases. GM-CSF could link T-cell-driven acute pulmonary inflammation with an autocrine, self-amplifying cytokine loop leading to monocyte and macrophage activation. This axis has been targeted in cytokine storm syndromes and chronic inflammatory disorders. Here, we consider the scientific rationale for therapeutic targeting of GM-CSF in COVID-19-associated hyperinflammation. Since GM-CSF also has a key role in homoeostasis and host defence, we discuss potential risks associated with inhibition of GM-CSF in the context of viral infection and the challenges of doing clinical trials in this setting, highlighting in particular the need for a patient risk-stratification algorithm.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/drug therapy , Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Immunologic Factors/therapeutic use , Pneumonia, Viral/drug therapy , Respiratory Distress Syndrome/prevention & control , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/virology , Disease Progression , Humans , Immunomodulation , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/virology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL